Login / Signup

Deciphering the mechanism of HM43239 inhibiting the mutant F691L resistant to gilteritinib in FMS-like tyrosine kinase 3.

Zhiwei WangYu AnJian WangJinghua Lu
Published in: Journal of biomolecular structure & dynamics (2023)
FMS-like tyrosine kinase (FLT3) has become the legitimate molecular therapeutic target for acute myeloid leukemia therapy. Though FLT3 inhibitors have impact on disease progression, drug resistance induced by secondary point mutations is the primary mechanism and urgent to overcome. Herein, we sought to decipher the mechanism of HM43239 inhibiting the mutant F691L resistant to gilteritinib in FLT3. A series of molecular modeling studies, including molecular dynamics (MD) simulation, dynamic cross-correlation (DCC) analysis, binding free energy (MM-GBSA) and docking study were explored to elucidate the differential tolerance mechanisms of two inhibitors to the same mutant. The F691L mutation had relatively larger effect on gilteritinib than HM43239, which showed as the changed and fixed conformation, respectively. These observations rationalized that the binding affinity of gilteritinib decreased more than that of HM43239 in the F691L mutant.Communicated by Ramaswamy H. Sarma.
Keyphrases