Revealing Adsorption Behaviors of Amphoteric Polyacrylamide on Cellulose Fibers and Impact on Dry Strength of Fiber Networks.
Xinyu ZhangYangyang ZhuXiaoyan WangPeipei WangJing TianWenyuan ZhuJunlong SongHuining XiaoPublished in: Polymers (2019)
Amphoteric polyacrylamide (AmPAM) has been widely used in a variety of industrial areas and the adsorption behavior of AmPAM plays a crucial role in its applications. In this study, a series of AmPAMs with various molecular weights (MW) were synthesized; and their impact on dry strength of fiber networks or paper was assessed. The results showed that the optimal MW of AmPAM for strength enhancement ranged between 300 and 500 k. More importantly, the adsorption behaviors of three typical AmPAM samples on silica (model substrate) and cellulose surfaces were revealed using a quartz crystal microbalance with dissipation monitoring (QCM-D) in situ and in real time. The adsorption dynamics of AmPAM and the conformation of the adlayers were further derived. The results indicated that a relatively high adsorption amount was achieved under the conditions of a high polymer concentration, a medium pH close to its isoelectric point (IEP), a mild ionic strength, and a high charged surface; whereas the MW of AmPAM had little effect on the equilibrium adsorption mass of AmPAM, but significantly affected the conformation of adsorbed layer on substrates. Based on the adsorption behaviors of AmPAM, the explanation of the best dry strength achieved in a narrow range of MW of AmPAM is proposed. It was concluded that the appropriate balance between bridging and flocculation, penetration into fiber pores, and conformation were only achieved in the optimal MW range of AmPAM. The findings obtained from in this work enable us to better understand the adsorption behaviors of polyampholyte, and provide a guideline on molecular design of AmPAM and its applications from both fundamental and practical points of view.