Login / Signup

Molecular-Level Photo-Orientation Insights into Macroscopic Photo-Induced Motion in Azobenzene-Containing Polymer Complexes.

Mahnaz KamaliardakaniJaana VapaavuoriXiaoxiao WangRibal Georges SabatC Geraldine BazuinChristian Pellerin
Published in: The journal of physical chemistry. B (2021)
As part of continuing efforts to deepen the understanding of photo-induced mass transport in azo-containing polymers, we compared the diffraction efficiency (DE) during surface-relief grating (SRG) inscription, photo-induced molecular orientation (<P2>), and thermal stability in two sets of supramolecular azopolymer complexes, namely, hydrogen-bonded (H-bonded) and ionically bonded (i-bonded) complexes, both as a function of the polymer degree of polymerization (DP). To that end, poly(4-vinylpyridine) (P4VP) polymers with DPs of 41, 480, and 1900 were H-bonded at an equimolar ratio with 4-hydroxy-4'-dimethylaminoazobenzene (azoOH), and the fully quaternized derivatives of the three P4VPs (P4VPMe) were i-bonded via ion exchange to sodium 4-[(4-dimethylamino)-phenylazo]benzene sulfonate (azoSO3), also known as methyl orange, where the OH functionality of azoOH is replaced by a sulfonate group. The i-bonded complexes show much better DE performances and <P2> levels than those of H-bonded complexes, which we relate to the liquid crystal structure of the former complexes. Fitting the <P2> curves by a biexponential equation leads to two parameters associated with a fast trans-cis or angular hole burning (AHB) process and a slow angular redistribution (AR) process of the azo, respectively. It is found that AHB is predominant in the H-bonded complexes, whereas the AR contribution is much greater in the i-bonded complexes, assuring their superior SRG efficiency that is enabled by the anisotropic free volume created mainly by the AR process. In each set of complexes, the SRG efficiency is much better for the lowest DP complex, while the AR contribution is constant (and low) for the H-bonded complexes and increases roughly linearly with the decrease in DP for the i-bonded complexes. The latter difference might be related to the presence of entanglements in the complexes with DPs 480 and 1900, which slow down the macroscopic movement during SRG inscription but not the molecular-scale movement in photo-orientation.
Keyphrases
  • high glucose
  • magnetic resonance imaging
  • diabetic rats
  • drug induced
  • magnetic resonance
  • mass spectrometry
  • endothelial cells
  • high resolution
  • stress induced