Login / Signup

Unusual plastic strain-induced phase transformation phenomena in silicon.

Sorb YesudhasValery I LevitasFeng LinK K PandeyJesse S Smith
Published in: Nature communications (2024)
Pressure-induced phase transformations (PTs) in Si, the most important electronic material, have been broadly studied, whereas strain-induced PTs have never been studied in situ. Here, we reveal in situ various important plastic strain-induced PT phenomena. A correlation between the direct and inverse Hall-Petch effect of particle size on yield strength and pressure for strain-induced PT is predicted theoretically and confirmed experimentally for Si-I→Si-II PT. For 100 nm particles, the strain-induced PT Si-I→Si-II initiates at 0.3 GPa under both compression and shear while it starts at 16.2 GPa under hydrostatic conditions. The Si-I→Si-III PT starts at 0.6 GPa but does not occur under hydrostatic pressure. Pressure in small Si-II and Si-III regions of micron and 100 nm particles is ∼5-7 GPa higher than in Si-I. For 100 nm Si, a sequence of Si-I → I + II → I + II + III PT is observed, and the coexistence of four phases, Si-I, II, III, and XI, is found under torsion. Retaining Si-II and single-phase Si-III at ambient pressure and obtaining reverse Si-II→Si-I PT demonstrates the possibilities of manipulating different synthetic paths. The obtained results corroborate the elaborated dislocation pileup-based mechanism and have numerous applications for developing economic defect-induced synthesis of nanostructured materials, surface treatment (polishing, turning, etc.), and friction.
Keyphrases
  • room temperature
  • high glucose
  • diabetic rats
  • drug induced
  • endothelial cells
  • photodynamic therapy
  • dna methylation
  • particulate matter