Login / Signup

New βN-octadecanoyl-5-hydroxytryptamide: antinociceptive effect and possible mechanism of action in mice.

Thais Biondino Sardella GiornoIris Gonçalvez da Silva MoreiraClaudia Moraes RezendePatricia Dias Fernandes
Published in: Scientific reports (2018)
The present study examined the potential antinociceptive activity of C18 5-HT (βN-octadecanoyl-5-hydroxytryptamide) using chemical and thermal nociception models in mice. Orally administered C18 5-HT (0.1, 1 and 10 mg/kg) produced significant dose-dependent antinociceptive effects in formalin-, capsaicin- and glutamate-induced licking models. This compound also induced a significant increase in the response to thermal stimuli in the hot plate test, and its antinociceptive effect was not related to muscle relaxant or sedative actions. In a thermal hyperalgesia model, C18 5-HT presented an anti-hyperalgesic profile as evidenced by the increase in the response time of the animals. Furthermore, intraperitoneal (i.p) pretreatment with naloxone (a non-selective opioid receptor antagonist, 1 mg/kg), ondansetron (serotoninergic receptor antagonist (5-HT3 subtype), 0.5 mg/kg) or AM241 (CB1 cannabinoid receptor antagonist, 1 mg/kg) reversed the antinociceptive effects of C18 5-HT in the hot plate model. In the formalin-induced licking model, pretreatment with naloxone reversed the antinociceptive effects of C18 5-HT, as demonstrated by an increase in the paw licking response when compared with the C18 5-HT-treated group. These findings suggest that C18 5-HT has peripheral and central antinociceptive effects and that its mechanism of action involves, ate least in part, opioid, serotoninergic and cannabinoid pathways.
Keyphrases
  • anti inflammatory
  • high glucose
  • diabetic rats
  • chronic pain
  • drug induced
  • type diabetes
  • endothelial cells
  • risk assessment
  • spinal cord injury
  • adipose tissue
  • high fat diet induced
  • neuropathic pain
  • human health