Relaxometry with Nitrogen Vacancy (NV) Centers in Diamond.
Aldona MzykAlina SigaevaRomana SchirhaglPublished in: Accounts of chemical research (2022)
ConspectusRelaxometry is a technique which makes use of a specific crystal lattice defect in diamond, the so-called NV center. This defect consists of a nitrogen atom, which replaces a carbon atom in the diamond lattice, and an adjacent vacancy. NV centers allow converting magnetic noise into optical signals, which dramatically increases the sensitivity of the readout, allowing for nanoscale resolution. Analogously to T1 measurements in conventional magnetic resonance imaging (MRI), relaxometry allows the detection of different concentrations of paramagnetic species. However, since relaxometry allows very local measurements, the detected signals are from nanoscale voxels around the NV centers. As a result, it is possible to achieve subcellular resolutions and organelle specific measurements.A relaxometry experiment starts with polarizing the spins of NV centers in the diamond lattice, using a strong laser pulse. Afterward the laser is switched off and the NV centers are allowed to stochastically decay into the equilibrium mix of different magnetic states. The polarized configuration exhibits stronger fluorescence than the equilibrium state, allowing one to optically monitor this transition and determine its rate. This process happens faster at higher levels of magnetic noise. Alternatively, it is possible to conduct T1 relaxation measurements from the dark to the bright equilibrium by applying a microwave pulse which brings NV centers into the -1 state instead of the 0 state. One can record a spectrum of T1 at varying strengths of the applied magnetic field. This technique is called cross-relaxometry. Apart from detecting magnetic signals, responsive coatings can be applied which render T1 sensitive to other parameters as pH, temperature, or electric field. Depending on the application there are three different ways to conduct relaxometry experiments: relaxometry in moving or stationary nanodiamonds, scanning magnetometry, and relaxometry in a stationary bulk diamond with a stationary sample on top.In this Account, we present examples for various relaxometry modes as well as their advantages and limitations. Due to the simplicity and low cost of the approach, relaxometry has been implemented in many different instruments and for a wide range of applications. Herein we review the progress that has been achieved in physics, chemistry, and biology. Many articles in this field have a proof-of-principle character, and the full potential of the technology still waits to be unfolded. With this Account, we would like to stimulate discourse on the future of relaxometry.