Login / Signup

Autophagy Behavior in Post-myocardial Infarction Injury.

Basheer Abdullah Marzoog
Published in: Cardiovascular & hematological disorders drug targets (2023)
Myocardial infarction and its sequalae remain the leading cause of death worldwide. Myocardial infarction (MI) survivors continue to live a poor quality of life due to extinguished heart failure. The post-MI period involves several changes at the cellular and subcellular levels, of which autophagy dysfunction. Autophagy is involved in the regulation of post-MI changes. Physiologically, autophagy preserves intracellular homeostasis by regulating energy expenditure and sources. Furthermore, dysregulated autophagy is considered the hallmark of the post-MI pathophysiological changes, which leads to the known short and long post-MI reperfusion injury sequalae. Autophagy induction strengthens self-defense mechanisms of protection against energy deprivation through economic energy sources and uses alternative sources of energy through the degradation of intracellular components of the cardiomyocyte. The protective mechanism against post-MI injury includes the enhancement of autophagy combined with hypothermia, which induces autophagy. However, several factors regulate autophagy, including starvation, nicotinamide adenine dinucleotide (NAD+), Sirtuins, other natural foods and pharmacological agents. Autophagy dysregulation involves genetics, epigenetics, transcription factors, small noncoding RNAs, small molecules, and special microenvironment. Autophagy therapeutic effects are signaling pathway-dependent and MI stage dependent. The paper covers recent advances in the molecular physiopathology of autophagy in post-MI injury and its potential target as a future therapeutic strategy.
Keyphrases