B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies.
Hao ZhouBelinda M DcostaMarie I SamanovicMark J MulliganNathaniel Roy LandauTakuya TadaPublished in: bioRxiv : the preprint server for biology (2021)
DNA sequence analysis recently identified the novel SARS-CoV-2 variant B.1.526 that is spreading at an alarming rate in the New York City area. Two versions of the variant were identified, both with the prevalent D614G mutation in the spike protein together with four novel point mutations and with an E484K or S477N mutation in the receptor binding domain, raising concerns of possible resistance to vaccine-elicited and therapeutic antibodies. We report that convalescent sera and vaccine-elicited antibodies retain full neutralizing titer against the S477N B.1.526 variant and neutralize the E484K version with a modest 3.5-fold decrease in titer as compared to D614G. The E484K version was neutralized with a 12-fold decrease in titer by the REGN10933 monoclonal antibody but the combination cocktail with REGN10987 was fully active. The findings suggest that current vaccines and therapeutic monoclonal antibodies will remain protective against the B.1.526 variants. The findings further support the value of wide-spread vaccination.