ETV2 Enhances CXCL5 Secretion from Endothelial Cells, Leading to the Promotion of Vascular Smooth Muscle Cell Migration.
Ningning SunBeyongsam ChuDong-Hyun ChoiLeejin LimHeesang SongPublished in: International journal of molecular sciences (2023)
Abnormal communication between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) promotes vascular diseases, including atherogenesis. ETS variant transcription factor 2 (ETV2) plays a substantial role in pathological angiogenesis and the reprogramming of ECs; however, the role of ETV2 in the communication between ECs and VSMCs has not been revealed. To investigate the interactive role of ETV2 in the EC to VSMC phenotype, we first showed that treatment with a conditioned medium from ETV2-overexpressed ECs (Ad-ETV2 CM) significantly increased VSMC migration. The cytokine array showed altered levels of several cytokines in Ad-ETV2 CM compared with those in normal CM. We found that C-X-C motif chemokine 5 (CXCL5) promoted VSMC migration using the Boyden chamber and wound healing assays. In addition, an inhibitor of C-X-C motif chemokine receptor 2 (CXCR2) (the receptor for CXCL5) significantly inhibited this process. Gelatin zymography showed that the activities of matrix metalloproteinase (MMP)-2 and MMP-9 increased in the media of VSMCs treated with Ad-ETV2 CM. Western blotting revealed a positive correlation between Akt/p38/c-Jun phosphorylation and CXCL5 concentration. The inhibition of Akt and p38-c-Jun effectively blocked CXCL5-induced VSMC migration. In conclusion, CXCL5 from ECs induced by ETV2 promotes VSMC migration via MMP upregulation and the activation of Akt and p38/c-Jun.