Login / Signup

Biomechanics of insect flight stability and perturbation response.

Tyson L HedrickEmily BlandfordHaithem E Taha
Published in: Integrative and comparative biology (2024)
Insects must fly in highly variable natural environments filled with gusts, vortices, and other transient aerodynamic phenomena that challenge flight stability. Furthermore, the aerodynamic forces that support insect flight are produced from rapidly oscillating wings of time-varying orientation and configuration. The instantaneous flight forces produced by these wings are large relative to the average forces supporting body weight. The magnitude of these forces and their time-varying direction add another challenge to flight stability, because even proportionally small asymmetries in timing or magnitude between the left and right wings may be sufficient to produce large changes in body orientation. However, these same large magnitude oscillating forces also offer an opportunity for unexpected flight stability through non-linear interactions between body orientation, body oscillation in response to time varying inertial and aerodynamic forces, and the oscillating wings themselves. Understanding the emergent stability properties of flying insects is a crucial step toward understanding the requirements for evolution of flapping flight and decoding the role of sensory feedback in flight control. Here we provide a brief review of insect flight stability, with some emphasis stability effects brought about by oscillating wings, and present some preliminary experimental data probing some aspects of flight stability in free-flying insects.
Keyphrases
  • body weight
  • big data
  • deep learning
  • blood brain barrier
  • single molecule
  • neural network