Mediation of the Cardioprotective Effects of Mannitol Discovered, with Refutation of Common Protein Kinases.
Carolin TorregrozaChiara O GlashoersterKatharina FeigeMartin StroethoffAnnika RaupachAndré HeinenMarkus W HollmannRagnar HuhnPublished in: International journal of molecular sciences (2021)
The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG-as possible targets of known protective signaling cascades-are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.
Keyphrases
- protein kinase
- cerebral ischemia
- acute myocardial infarction
- nitric oxide
- signaling pathway
- cell proliferation
- ischemia reperfusion injury
- high glucose
- oxidative stress
- left ventricular
- endothelial cells
- induced apoptosis
- heart failure
- tyrosine kinase
- binding protein
- atrial fibrillation
- blood brain barrier
- acute ischemic stroke
- amino acid
- percutaneous coronary intervention
- acute coronary syndrome
- nitric oxide synthase
- protein protein
- solid phase extraction
- stress induced
- atomic force microscopy
- tandem mass spectrometry