Login / Signup

Moderate-density parity-check codes from projective bundles.

Jessica BariffiSam MattheusAlessandro NeriJoachim Rosenthal
Published in: Designs, codes, and cryptography (2022)
New constructions for moderate-density parity-check (MDPC) codes using finite geometry are proposed. We design a parity-check matrix for the main family of binary codes as the concatenation of two matrices: the incidence matrix between points and lines of the Desarguesian projective plane and the incidence matrix between points and ovals of a projective bundle. A projective bundle is a special collection of ovals which pairwise meet in a unique point. We determine the minimum distance and the dimension of these codes, and we show that they have a natural quasi-cyclic structure. We consider alternative constructions based on an incidence matrix of a Desarguesian projective plane and compare their error-correction performance with regards to a modification of Gallager's bit-flipping decoding algorithm. In this setting, our codes have the best possible error-correction performance after one round of bit-flipping decoding given the parameters of the code's parity-check matrix.
Keyphrases
  • risk factors
  • machine learning
  • deep learning
  • ionic liquid