Increasing the Number of Aluminum Atoms in T 3 Sites of a Mordenite Zeolite by Low-Pressure SiCl 4 Treatment to Catalyze Dimethyl Ether Carbonylation.
Rongsheng LiuBenhan FanWenna ZhangLinying WangLiang QiYingli WangShutao XuZhengxi YuYingxu WeiZhongmin LiuPublished in: Angewandte Chemie (International ed. in English) (2022)
Controlling the location of aluminum atoms in a zeolite framework is critical for understanding structure-performance relationships of catalytic reaction systems and tailoring catalyst design. Herein, we report a strategy to preferentially relocate mordenite (MOR) framework Al atoms into the desired T 3 sites by low-pressure SiCl 4 treatment (LPST). High-field 27 Al NMR was used to identify the exact location of framework Al for the MOR samples. The results indicate that 73 % of the framework Al atoms were at the T 3 sites after LPST under optimal conditions, which leads to controllably generating and intensifying active sites in MOR zeolite for the dimethyl ether (DME) carbonylation reaction with higher methyl acetate (MA) selectivity and much longer lifetime (25 times). Further research reveals that the Al relocation mechanism involves simultaneous extraction, migration, and reinsertion of Al atoms from and into the parent MOR framework. This unique method is potentially applicable to other zeolites to control Al location.