Metabolomic Changes in Sogatella furcifera under Southern rice black-streaked dwarf virus Infection and Temperature Stress.
Tong ZhangWendi FengJiajie YeZhanbiao LiGuohui ZhouPublished in: Viruses (2018)
Southern rice black-streaked dwarf virus (SRBSDV) is a devastating newly emerged rice reovirus in Eastern and Southeastern Asia transmitted by a long-distance migratory pest, the white-backed planthopper (WBPH). We previously showed that SRBSDV infection decreased the cold tolerance but improved the heat tolerance of its vector, WBPH. Comparative metabolomic analysis was used to explore the potential mechanisms underlying these changes in temperature stress response. Fourth-generation WBPH nymphs were treated with SRBSDV and/or extreme temperature stress and were analyzed using gas chromatography-time of flight-mass spectrometry. A total of 605 distinguishable peaks were identified and 165, 207, and 202 differentially accumulated metabolites were identified in WBPH after virus infection, cold, or heat stress, respectively. The nucleic acids and fatty acids were the major categories of metabolites regulated by SRBSDV infection, whereas temperature stress regulated tricarboxylic acid cycle compounds, sugars, and polyols. For the WBPH samples infected with SRBSDV and subjected to temperature stress, amino acids, sugars, and polyols were the most significant regulated metabolites. The metabolomics study suggests that SRBSDV may influence the extreme temperature tolerance of WBPH by regulating the accumulation of amino acids, sugars, and polyols in the insect body.