RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences.
Lei ChenYuwei ChenPublished in: Briefings in bioinformatics (2023)
Post-translational modification (PTM) occurs after a protein is translated from ribonucleic acid. It is an important living creature life phenomenon because it is implicated in almost all cellular processes. Identification of PTM sites from a given protein sequence is a hot topic in bioinformatics. Lots of computational methods have been proposed, and they provide good performance. However, most previous methods can only tackle one PTM type. Few methods consider multiple PTM types. In this study, a multi-label classification model, named RMTLysPTM, was developed to recognize four types of lysine (K) PTM sites, including acetylation, crotonylation, methylation and succinylation. The surrounding sites of a lysine site were selected to constitute a peptide segment, representing the lysine at the center. Deep analysis was conducted to count the distribution of 2-residues with fixed location across the four types of lysine PTM sites. By aggregating the distribution information of 2-residues in one peptide segment, the peptide segment was encoded by informative features. Furthermore, a prediction engine that can precisely capture the traits of the above representations was designed to recognize the types of lysine PTM sites. The cross-validation results on two datasets (Qiu and CPLM training datasets) suggested that the model had extremely high performance and RMTLysPTM had strong generalization ability by testing it on protein Q16778 and CPLM testing datasets. The model was found to be generally superior to all previous models and those using popular methods and features. A web server was set up for RMTLysPTM, and it can be accessed at http://119.3.127.138/.