Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis.
Lúcia Moreira-TeixeiraPhilippa J StimpsonEvangelos StavropoulosSabelo HadebeProbir ChakravartyMarianna IoannouIker Valle AramburuEleanor HerbertSimon Lawrence PriestnallAlejandro Suarez-BonnetJeremy SousaKaori L FonsecaQian WangSergo VashakidzePaula Rodríguez-MartínezCristina VilaplanaMargarida SaraivaVenizelos PapayannopoulosAnne O'GarraPublished in: Nature communications (2020)
Tuberculosis (TB) is a leading cause of mortality due to infectious disease, but the factors determining disease progression are unclear. Transcriptional signatures associated with type I IFN signalling and neutrophilic inflammation were shown to correlate with disease severity in mouse models of TB. Here we show that similar transcriptional signatures correlate with increased bacterial loads and exacerbate pathology during Mycobacterium tuberculosis infection upon GM-CSF blockade. Loss of GM-CSF signalling or genetic susceptibility to TB (C3HeB/FeJ mice) result in type I IFN-induced neutrophil extracellular trap (NET) formation that promotes bacterial growth and promotes disease severity. Consistently, NETs are present in necrotic lung lesions of TB patients responding poorly to antibiotic therapy, supporting the role of NETs in a late stage of TB pathogenesis. Our findings reveal an important cytokine-based innate immune effector network with a central role in determining the outcome of M. tuberculosis infection.
Keyphrases
- mycobacterium tuberculosis
- pulmonary tuberculosis
- dendritic cells
- genome wide
- immune response
- oxidative stress
- innate immune
- end stage renal disease
- infectious diseases
- high fat diet induced
- newly diagnosed
- ejection fraction
- gene expression
- mouse model
- transcription factor
- peritoneal dialysis
- cardiovascular events
- risk factors
- prognostic factors
- cardiovascular disease
- bone marrow
- type diabetes
- diabetic rats
- hepatitis c virus
- cerebrospinal fluid
- coronary artery disease
- adipose tissue
- regulatory t cells
- heat shock
- hiv aids
- insulin resistance
- drug induced
- wild type
- electronic health record