Exploring the "N-Terminal Anchor" Binding Interface of the T3SS Chaperone-Translocator Complexes from P. aeruginosa .
Charlotte L FranklingAngray S KangEwan R G MainPublished in: Biochemistry (2023)
The type III secretion system is a large multiprotein complex that many Gram-negative bacteria use for infection. A crucial part of the complex is its translocon pore formed by two proteins: the major and minor translocators. The pore completes a proteinaceous channel from the bacterial cytosol through the host cell membrane and allows the direct injection of bacterial toxins. Effective pore formation is predicated by the translocator proteins binding to a small chaperone within the bacterial cytoplasm. Given the vital role of the chaperone-translocator interaction, we investigated the specificity of the "N-terminal anchor" binding interface present in both translocator-chaperone complexes from Pseudomonas aeruginosa . Isothermal calorimetry (ITC), alanine scanning, and the selection of a motif-based peptide library using ribosome display were used to characterize the major (PopB) and minor (PopD) translocator interactions with their chaperone PcrH. We show that 10 mer PopB 51-60 and PopD 47-56 peptides bind to PcrH with a K D of 148 ± 18 and 91 ± 9 μM, respectively. Moreover, mutation to alanine of each of the consensus residues (xxVxLxxPxx) of the PopB peptide severely affected or completely abrogated binding to PcrH. When the directed peptide library (X-X-hydrophobic-X-L-X-X-P-X-X) was panned against PcrH, there was no obvious convergence at the varied residues. The PopB/PopD wild-type (WT) sequences were also not prevalent. However, a consensus peptide was shown to bind to PcrH with micromolar affinity. Thus, selected sequences were binding with similar affinities to WT PopB/PopD peptides. These results demonstrate that only the conserved "xxLxxP" motif drives binding at this interface.