Using big data to promote precision oral health in the context of a learning healthcare system.
Joseph FinkelsteinFrederick ZhangSeth A LevitinDavid CappelliPublished in: Journal of public health dentistry (2020)
There has been a call for evidence-based oral healthcare guidelines, to improve precision dentistry and oral healthcare delivery. The main challenges to this goal are the current lack of up-to-date evidence, the limited integrative analytical data sets, and the slow translations to routine care delivery. Overcoming these issues requires knowledge discovery pipelines based on big data and health analytics, intelligent integrative informatics approaches, and learning health systems. This article examines how this can be accomplished by utilizing big data. These data can be gathered from four major streams: patients, clinical data, biological data, and normative data sets. All these must then be uniformly combined for analysis and modelling and the meaningful findings can be implemented clinically. By executing data capture cycles and integrating the subsequent findings, practitioners are able to improve public oral health and care delivery.
Keyphrases