Overexpression of an Engineered SerpinB9 Enhances Allogeneic T-Cell Persistence and Efficacy.
Pei Yun TeoYoungrock JungDavid H QuachJoanna KohRichard Weijie OngAngeline Xh GohAlrina Shin Min TanChee Hoe NgCheah Chen SehKar Wai TanIvan D HorakLionel LowPublished in: Cancer immunology research (2024)
Allogeneic chimeric antigen receptor (CAR)-expressing T cells offer many advantages over autologous therapies, but their benefits are curtailed by graft-versus-host disease (GvHD) and elimination by recipient immune cells. Moreover, just as with autologous therapies, allogeneic CAR T cells are susceptible to activation-induced cell death (AICD) caused by chronic antigen exposure (CAE). Granzyme B (GzmB) and Fas/FasL-initiated, caspase-mediated apoptosis are key mechanisms of T-cell death caused by T/NK cell-mediated allorejection or CAE. We explored a protective strategy of engineering CAR T cells to overexpress variants of the GzmB-specific serine protease inhibitor, SerpinB9 (SB9), to improve allogeneic T-cell persistence and antitumor efficacy. We showed that the overexpression of an SB9 variant with broadened caspase specificity, SB9(CAS), not only significantly reduced rejection of allogeneic CAR T cells, but also increased their resistance to AICD and enabled them to thrive better under CAE, thus improving allogeneic T-cell persistence and antitumor activity in vitro and in vivo. In addition, while SB9(CAS)-overexpression improved the efficacy of allogeneic CAR T-cell therapy by conferring protection to cell death, we did not observe any autonomous growth and the engineered CAR T cells were still susceptible to an inducible suicide switch. Hence, SB9(CAS)-overexpression is a promising strategy that can strengthen current development of cell therapies, broadening their applications to address unmet medical needs.