Login / Signup

Cell envelope growth of Gram-negative bacteria proceeds independently of cell wall synthesis.

Enno R OldewurtelYuki KitaharaBaptiste CordierRichard WheelerGizem Özbaykal GülerElisa BrambillaIvo Gomperts BonecaLars David RennerSven van Teeffelen
Published in: The EMBO journal (2023)
All bacterial cells must expand their envelopes during growth. The main load-bearing and shape-determining component of the bacterial envelope is the peptidoglycan cell wall. Bacterial envelope growth and shape changes are often thought to be controlled through enzymatic cell wall insertion. We investigated the role of cell wall insertion for cell shape changes during cell elongation in Gram-negative bacteria. We found that both global and local rates of envelope growth of Escherichia coli remain nearly unperturbed upon arrest of cell wall insertion-up to the point of sudden cell lysis. Specifically, cells continue to expand their surface areas in proportion to biomass growth rate, even if the rate of mass growth changes. Other Gram-negative bacteria behave similarly. Furthermore, cells plastically change cell shape in response to differential mechanical forces. Overall, we conclude that cell wall-cleaving enzymes can control envelope growth independently of synthesis. Accordingly, the strong overexpression of an endopeptidase leads to transiently accelerated bacterial cell elongation. Our study demonstrates that biomass growth and envelope forces can guide cell envelope expansion through mechanisms that are independent of cell wall insertion.
Keyphrases
  • cell wall
  • single cell
  • escherichia coli
  • staphylococcus aureus
  • oxidative stress
  • stem cells
  • transcription factor
  • cell cycle arrest
  • multidrug resistant
  • high resolution
  • cell cycle