Machine learning in liver transplantation: a tool for some unsolved questions?
Alberto FerrareseGiuseppe SartoriGraziella OrrùAnna Chiara FrigoFilippo PelizzaroPatrizia BurraMarco SenzoloPublished in: Transplant international : official journal of the European Society for Organ Transplantation (2021)
Machine learning has recently been proposed as a useful tool in many fields of Medicine, with the aim of increasing diagnostic and prognostic accuracy. Models based on machine learning have been introduced in the setting of solid organ transplantation too, where prognosis depends on a complex, multidimensional and nonlinear relationship between variables pertaining to the donor, the recipient and the surgical procedure. In the setting of liver transplantation, machine learning models have been developed to predict pretransplant survival in patients with cirrhosis, to assess the best donor-to-recipient match during allocation processes, and to foresee postoperative complications and outcomes. This is a narrative review on the role of machine learning in the field of liver transplantation, highlighting strengths and pitfalls, and future perspectives.