Metagenomic Characterization of the Viral Community of the South Scotia Ridge.
Qingwei YangChen GaoYong JiangMin WangXinhao ZhouHongbing ShaoZheng GongAndrew McMinnPublished in: Viruses (2019)
Viruses are the most abundant biological entities in aquatic ecosystems and harbor an enormous amount of genetic diversity. Whereas their influence on marine ecosystems is widely acknowledged, current information about their diversity remains limited. We conducted a viral metagenomic analysis of water samples collected during the austral summer of 2016 from the South Scotia Ridge (SSR), near the Antarctic Peninsula. The taxonomic composition and diversity of the viral communities were investigated, and a functional assessment of the sequences was performed. Phylotypic analysis showed that most viruses belonged to the order Caudovirales, especially the family Podoviridae (41.92⁻48.7%), which is similar to the situation in the Pacific Ocean. Functional analysis revealed a relatively high frequency of phage-associated and metabolism genes. Phylogenetic analyses of phage TerL and Capsid_NCLDV (nucleocytoplasmic large DNA viruses) marker genes indicated that many sequences associated with Caudovirales and NCLDV were novel and distinct from known phage genomes. High Phaeocystis globosa virus virophage (Pgvv) signatures were found and complete and partial Pgvv-like were obtained, which influence host⁻virus interactions. Our study expands existing knowledge of viral communities and their diversities from the Antarctic region and provides basic data for further exploring polar microbiomes.
Keyphrases
- genetic diversity
- high frequency
- sars cov
- pseudomonas aeruginosa
- genome wide
- healthcare
- climate change
- transcranial magnetic stimulation
- single molecule
- atomic force microscopy
- heat stress
- big data
- genome wide identification
- machine learning
- electronic health record
- cell free
- circulating tumor
- artificial intelligence
- health information
- social media
- mass spectrometry