Aromaticity Criterion Is Not the Only Factor to Decide the Ring Stability of Boron Oxide Families: c-M2O2-/0 Clusters (M = B, Al, Ga, and In).
Shanjun ChenJiangle ZhangZhenhang JinXingtai QiuZhengbo QinZichao TangLansun ZhengPublished in: Inorganic chemistry (2020)
Generally, compared to conjugated chain molecules, aromaticity provides additional stability for the cyclic, planar, and conjugated molecules. Thus, the concept of aromaticity was undeniably utilized to explain the unique stability for extensive cyclic molecules (notably for benzene, recently reported boron rings, and all-metal multiply aromatic Al42- salts) to guide chemical syntheses. However, can aromaticity alone describe the stability for all of those cyclic and planar clusters or molecules? In this regard, we observed the four-membered prototypical rings: c-M2O2-/0 clusters (M = B, Al, Ga, and In) possessing unique rhombic (four-center, four-electron) π and σ o-bonds, which are considered to have 3-fold aromaticity. Moreover, we not only elucidated the key role of ring strain energy (RSE) to determine the stability of these rings but also unexpectedly revealed that the electrostatic interaction (ionicity) plays a fundamental role in the stability of Al2O2-/0 clusters through systematically experimental and theoretical investigations into the isolated M2O2-/0 clusters (M = B, Al, Ga, and In). Detailed geometries, molecular orbital, and chemical bonding nature were analyzed to unravel those influences. This work provides a clue in which RSE and the electrostatic effect should be carefully taken into account for the stability of diverse cyclic clusters or molecules compared to the expected stability factor from aromaticity.