Login / Signup

Electric pulse-tuned piezotronic effect for interface engineering.

Qiuhong YuRui GeJuan WenQi XuZhouguang LuShuhai LiuYong Qin
Published in: Nature communications (2024)
Investigating interface engineering by piezoelectric, flexoelectric and ferroelectric polarizations in semiconductor devices is important for their applications in electronics, optoelectronics, catalysis and many more. The interface engineering by polarizations strongly depends on the property of interface barrier. However, the fixed value and uncontrollability of interface barrier once it is constructed limit the performance and application scenarios of interface engineering by polarizations. Here, we report a strategy of tuning piezotronic effect (interface barrier and transport controlled by piezoelectric polarization) reversibly and accurately by electric pulse. Our results show that for Ag/HfO 2 /n-ZnO piezotronic tunneling junction, the interface barrier height can be reversibly tuned as high as 168.11 meV by electric pulse, and the strain (0-1.34‰) modulated current range by piezotronic effect can be switched from 0-18 nA to 44-72 nA. Moreover, piezotronic modification on interface barrier tuned by electric pulse can be up to 148.81 meV under a strain of 1.34‰, which can totally switch the piezotronic performance of the electronics. This study provides opportunities to achieve reversible control of piezotronics, and extend them to a wider range of scenarios and be better suitable for micro/nano-electromechanical systems.
Keyphrases
  • blood pressure
  • climate change
  • quantum dots
  • wastewater treatment
  • gold nanoparticles