Tailoring the Porosity in Iron Phosphosulfide Nanosheets to Improve the Performance of Photocatalytic Hydrogen Evolution.
Jian ZhangFang FengYong PuXing'ao LiCher Hon LauWei HuangPublished in: ChemSusChem (2019)
Metal sulfide photocatalysts are typically required during water splitting to produce hydrogen. However, the rapid recombination of photogenerated electron-hole pairs in these highly unstable photocatalysts has restricted hydrogen production to small-scale batch reactions. In this work, porous transition-metal thiophosphites were used to enable continuous long-term hydrogen production through photocatalysis. A wide bandgap (2.04 eV) was essential for generating hydrogen at a rate of 305.6 μmol h-1 g-1 , 180 % faster than nonporous FePS3 nanosheets. More importantly, the high in-plane stiffness of these approximately 7 nm thick porous FePS3 nanosheets ensured structural stability during 56 h of continuous photocatalysis reactions. The reaction results with D2 O instead of H2 O indicated that hydrogen mainly came from H2 O. Furthermore, a sacrificial reagent (triethylamine) was photodegraded into diethylamine and acetaldehyde through a monoelectronic oxidation process, as indicated by HPLC and LC-MS. This synthesis strategy reported for FePS3 porous nanosheets paves a new pathway for designing other dianion-based inorganic nanocrystals for hydrogen energy applications.