Login / Signup

Scientific Intelligence: Recognising It to Nurture It.

Debra McGregorSarah Frodsham
Published in: Journal of Intelligence (2023)
Successful scientists need to think carefully about the particular aspect of the world around them they are investigating. They build on what is known in their area of science to identify how they might examine the issue or problem they are concerned with to offer further insights. Through investigating natural phenomena, they can solve problems and communicate new ways of looking at the world. Their work serves to address global and societal challenges and often offers improved ways of living. The ways that scientists' work can have implications for educational processes designed to prepare would-be scientists or scientifically aware citizens of the future. Eliciting reflections from experienced scientists recounting how they came to develop their scientific intellect, expertise and problem-solving know-how is useful to inform science education. This article reports on an aspect of a larger project involving 24 scientists specialising in biological or physical science research from Higher Education Institutions, located in either Manchester, Oxford or London. The study adopts a retrospective phenomenographical methodology and applies two fresh theoretical perspectives to eight in-depth interviews with professional scientists working in university departments involved in ground-breaking research. Conversations with the scientists were framed to explore the nature and extent of formal and informal learning influences affecting the development of their inventiveness and expertise in becoming scientists. The reified perspectives collated here show how a range of experiences have afforded expert scientists the opportunity to apply their intellectual capabilities. These kinds of demonstrable abilities have enabled them to scientifically contribute to being able to solve real-world problems. Additionally, a cross-case analysis of scientists' reported learning experiences could inform science education policy and practice.
Keyphrases
  • mental health
  • healthcare
  • public health
  • quality improvement
  • primary care
  • physical activity
  • optical coherence tomography
  • clinical practice
  • advance care planning