Excellent optoelectronic applications and electrical transport behavior of the n-WO3nanostructures/p-diamond heterojunction: a new perspective.
Yu YaoDandan SangSusu DuanQing-Lin WangCailong LiuPublished in: Nanotechnology (2021)
Nanostructured n-type metal oxides/p-type boron-doped diamond heterojunctions have demonstrated a typical rectification feature and/or negative differential resistance (NDR) potentially applied in wide fields. Recently, the fabrication and electronic transport behavior of n-WO3nanorods/p-diamond heterojunction at high temperatures were studied by Wanget al(2017Appl. Phys. Lett.110052106), which opened the door for optoelectronic applications that can operate at high-temperatures, high-power, and in various harsh environments. In this perspective, an overview was presented on the future directions, challenges and opportunities for the optoelectronic applications based on the n-WO3nanostructures/p-diamond heterojunction. We focus, in particular, on the prospects for its high temperature NDR, UV photodetector, field emission emitters, photocatalyst and optical information storage for a wide range of new optoelectronic applications.