Login / Signup

Dynamically actuated soft heliconical architecture via frequency of electric fields.

Binghui LiuCong-Long YuanHong-Long HuHao WangYu-Wen ZhuPei-Zhi SunZhi-Ying LiZhi-Gang ZhengYan-Qing Lu
Published in: Nature communications (2022)
Dynamic electric field frequency actuated helical and spiral structures enable a plethora of attributes for advanced photonics and engineering in the contemporary era. Nevertheless, leveraging the frequency responsiveness of adaptive devices and systems within a broad dynamic range and maintaining restrained high-frequency induced heating remain challenging. Herein, we establish a frequency-actuated heliconical soft architecture that is quite distinct from that of common frequency-responsive soft materials. We achieve reversible modulation of the photonic bandgap in a wide spectral range by delicately coupling the frequency-dependent thermal effect, field-induced dielectric torque and elastic equilibrium. Furthermore, an information encoder prototype without the aid of complicated algorithm design is established to analogize an information encoding and decoding process with a more convenient and less costly way. A technique for taming and tailoring the distribution of the pitch length is exploited and embodied in a prototype of a spatially controlled soft photonic cavity and laser emission. This work demonstrates a distinct frequency responsiveness in a heliconical soft system, which may not merely inspire the interest in field-assisted bottom-up molecular engineering of soft matter but also facilitate the practicality of adaptive photonics.
Keyphrases