Login / Signup

Chemical-Fuel-Driven Assembly in Macromolecular Science: Recent Advances and Challenges.

ZeJian LengFeng PengXiang Hao
Published in: ChemPlusChem (2020)
In the past decade, chemical-fuel-driven processes have been integrated with synthetic self-assembled systems, in which both the formation and properties can be carefully controlled. This strategy can drive systems far away from equilibrium, tailor the lifetime window of transient self-assembled systems, thus holding promise for future smart, adaptive, self-regulated, and life-like systems. By judging whether the building blocks or transient self-assembled systems participate in the fuel-to-waste conversion, the reported systems can be divided into two classes: dissipative self-assembly and self-assembly under dissipative conditions. Among these systems, the utilization of macromolecular building blocks to design non-equilibrium self-assemblied systems is becoming common. Macromolecular systems capable of dissipating energy with a programmed time domain have found widespread application, and have therefore been an active field of scientific inquiry. This Minireview aims to highlight the recent progress and opportunities of chemical-fuel-driven assembly in macromolecules. We envision that chemical-fuel-driven approach will play an increasingly important role in polymer science in the near future.
Keyphrases
  • public health
  • molecular dynamics
  • transcription factor
  • deep learning
  • heavy metals