Login / Signup

Synthesis and photocatalytic activity of mesoporous g-C3N4/MoS2 hybrid catalysts.

Yirong QiQinghua LiangRuitao LvWanci ShenFeiyu KangZheng-Hong Huang
Published in: Royal Society open science (2018)
The key to solving environmental and energy issues through photocatalytic technology requires highly efficient, stable and eco-friendly photocatalysts. Graphitic carbon nitride (g-C3N4) is one of the most promising candidates except for its limited photoactivity. In this work, a facile and scalable one-step method is developed to fabricate an efficient heterostructural g-C3N4 photocatalyst in situ coupled with MoS2. The strong coupling effect between the MoS2 nanosheets and g-C3N4 scaffold, numerous mesopores and enlarged specific surface area helped form an effective heterojunction. As such, the photocatalytic activity of the g-C3N4/MoS2 is more than three times higher than that of the pure g-C3N4 in the degradation of RhB under visible light irradiation. Improvement of g-C3N4/MoS2 photocatalytic performance is mainly ascribed to the effective suppression of the recombination of charge carriers.
Keyphrases
  • visible light
  • highly efficient
  • room temperature
  • radiation therapy
  • dna damage
  • risk assessment
  • oxidative stress
  • climate change
  • gold nanoparticles
  • radiation induced
  • reduced graphene oxide
  • perovskite solar cells