Login / Signup

Comparison of Various Solvent Extracts and Major Bioactive Components from Portulaca oleracea for Antioxidant, Anti-Tyrosinase, and Anti-α-Glucosidase Activities.

Wei-Cheng ChenShih-Wei Wang LCai-Wei LiHsiang-Ru LinChang-Syun YangYi-Cheng ChuTzong-Huei LeeJih-Jung Chen
Published in: Antioxidants (Basel, Switzerland) (2022)
Portulaca oleracea is a well-known species for traditional medicine and food homology in Taiwan. In traditional medicine, P. oleracea is also used to treat gastrointestinal disorders, liver inflammation, fever, severe inflammation, and headaches. We investigated antioxidant, anti-tyrosinase, and anti-α-glucosidase activities of various solvent extracts and major bioactive components from P. oleracea . Ethanol and acetone extracts showed potent DPPH, ABTS, and hydroxyl radical scavenging activities. Chloroform and n -hexane extracts displayed significant superoxide radical scavenging activity. Furthermore, ethyl acetate and acetone extracts of P. oleracea showed potent anti-tyrosinase and anti-α-glucosidase activities. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated seven major compounds and analyzed their antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. Seven active compounds of P. oleracea , especially quercetin, rosmarinic acid, and kaempferol, exhibited obvious antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. The molecular docking model and the hydrophilic interactive mode of tyrosinase and α-glucosidase revealed that active compounds might have a higher antagonistic effect than commonly inhibitors. Our result shows that the active solvent extracts and their components of P. oleracea have the potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors. Our results suggest that the active solvent extracts of P. oleracea and their components have potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors.
Keyphrases
  • molecular docking
  • oxidative stress
  • ms ms
  • mass spectrometry
  • liquid chromatography