Login / Signup

Optimizing extraction method of aroma compounds from grape pomace.

Zijian LiangAhalya PaiDi LiuJiaqiang LuoJihong WuZhongxiang FangPang-Zhen Zhang
Published in: Journal of food science (2020)
Grape pomace is a major wine industry byproduct. Extraction of volatile compounds from grape pomace is rarely explored. A cost-effective method was developed in this study for aroma compounds extraction from grape pomace with the potential for industrial application. Based on the solvent extraction procedure, experimental factors including pretreatment, enzymatic hydrolysis time, solvent concentration and distillation time were investigated to optimize the extraction process. Volatile compounds of the pomace extract were analyzed using headspace solid-phase microextraction gas-chromatography mass spectrometry (HS-SPME-GC-MS) method. Results revealed that enzymatic hydrolysis was the optimal pretreatment method. A maximum extraction efficiency was achieved under 48 hr of enzymatic hydrolysis, 70% of ethanol concentration and 20 min of distillation. A total of 65 volatile compounds were identified in the extract, including 16 alcohols, 1 alkane, 1 aldehyde, 9 esters, 3 ketones, 4 phenols, 6 terpenes, and 1 furan, of which 15 volatiles were determined as odor-active compounds. This study developed a feasible extraction technique to recycle the underutilized byproducts from wine industry to produce aroma/flavor food additives. PRACTICAL APPLICATION: This study develops a cost-effective method for aroma compounds extraction from grape pomace with the potential for industrial application as food additives.
Keyphrases
  • gas chromatography mass spectrometry
  • gas chromatography
  • hydrogen peroxide
  • ionic liquid
  • oxidative stress
  • wastewater treatment
  • human health
  • mass spectrometry
  • climate change