Login / Signup

Silver-coated magnetic nanoparticles as an efficient delivery system for the antibiotics trimethoprim and sulfamethoxazole against E. Coli and S. aureus: release kinetics and antimicrobial activity.

Fatemeh MehrabiTayebeh ShamspurHassan SheibaniAli MostafaviMaryam MohamadiHamid HakimiReza BahramabadiElham Salari
Published in: Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine (2021)
Trimethoprim and sulfamethoxazole are prescribed for a broad spectrum of bacteria. However, the use of these medicines is restricted due to the risk of microbial resistance in the body. Nanotechnology is a strategy for overcoming this problem by helping develop novel drug delivery systems. This study aims to assess the ability of Fe3O4/Ag and Fe3O4@SiO2/Ag nanoparticles to improve efficiency of the traditional formulation of trimethoprim and sulfamethoxazole. Fe3O4/Ag and Fe3O4@SiO2/Ag were found to have sphere-like morphologies with average sizes of 33.2 and 35.1 nm, respectively. The values of the zeta potential for the pure sulfamethoxazole and trimethoprim were -30.6 and -10.0 mV, respectively, which increased to zero or even larger positive values after being conjugated with the NPs. The study of the release kinetics showed that 64.7% of the medicines were released from the carriers within 40 days. The values of MIC for sulfamethoxazole, trimethoprim, Fe3O4/Ag/sulfamethoxazole, Fe3O4/Ag/trimethoprim, Fe3O4@SiO2/Ag/sulfamethoxazole, and Fe3O4@SiO2/Ag/trimethoprim against Escherichia coli were calculated to be 12, 9, 4, 4, 4, and 4 μg/mL, respectively. Besides, the relevant values against Staphylococcus aureus were measured to be 12, 9, 4, 4, 3, and 2 μg/mL, respectively. The use of synthesized nanomaterials for the delivery of these antibiotics leads to smaller doses compared to their traditional forms.
Keyphrases
  • quantum dots
  • magnetic nanoparticles
  • highly efficient
  • escherichia coli
  • antibiotic resistance genes
  • visible light
  • staphylococcus aureus
  • drug delivery
  • photodynamic therapy
  • biofilm formation