Liquid marbles (LMs) are widely used in the fields of microfluids, gas sensitivity equipment, and microreactors. However, the thermal stability of the encapsulated liquid poses difficulty to the high-temperature stability of LMs. In this study, polar phase-change materials (PCMs) with high melting points were used as the encapsulated liquid of LMs. According to the required temperature, suitable PCMs were selected as the core and encapsulated by hydrophobic SiO 2 particles to form melt marbles (MMs). The types of PCMs used to prepare the MMs include erythritol, elemental sulfur, urea, and molten salts. Based on the premixed melting method, a series of MMs with high melting points and thermal stability were successfully developed. The highest acceptable temperature of the MMs exceeded 323 °C, and the evaporation rate of erythritol MMs was less than 1% at 140 °C in 8 h. Thus, the MMs maintained their excellent stability through multiple phase transitions. In the molten state, the MMs exhibited the properties of bounce ability, cuttability, and deformation resistance. The performance of the PCMs in energy storage and release during phase transition demonstrates their potential applications in the field of heat storage.