Login / Signup

Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols.

Italo F do ValleHarvey G RowethMichael W MalloySofia MocoDenis BarronElisabeth BattinelliJoseph LoscalzoAlbert-László Barabási
Published in: Nature food (2021)
Polyphenols, natural products present in plant-based foods, play a protective role against several complex diseases through their antioxidant activity and by diverse molecular mechanisms. Here we develop a network medicine framework to uncover mechanisms for the effects of polyphenols on health by considering the molecular interactions between polyphenol protein targets and proteins associated with diseases. We find that the protein targets of polyphenols cluster in specific neighbourhoods of the human interactome, whose network proximity to disease proteins is predictive of the molecule's known therapeutic effects. The methodology recovers known associations, such as the effect of epigallocatechin-3-O-gallate on type 2 diabetes, and predicts that rosmarinic acid has a direct impact on platelet function, representing a novel mechanism through which it could affect cardiovascular health. We experimentally confirm that rosmarinic acid inhibits platelet aggregation and α-granule secretion through inhibition of protein tyrosine phosphorylation, offering direct support for the predicted molecular mechanism. Our framework represents a starting point for mechanistic interpretation of the health effects underlying food-related compounds, allowing us to integrate into a predictive framework knowledge on food metabolism, bioavailability and drug interaction.
Keyphrases
  • type diabetes
  • healthcare
  • public health
  • endothelial cells
  • human health
  • amino acid
  • cardiovascular disease
  • emergency department
  • metabolic syndrome
  • risk assessment
  • glycemic control
  • insulin resistance