The Utilization of Physiologically Active Molecular Components of Grape Seeds and Grape Marc.
Imre HegedüsKitti AndreideszJozsef L SzentpeteriZoltán KaletaLászló SzabóKrisztián SzigetiParasuraman PadmanabhanParasuraman PadmanabhanFerenc BudanDomokos MathePublished in: International journal of molecular sciences (2022)
Nutritional interventions may highly contribute to the maintenance or restoration of human health. Grapes ( Vitis vinifera ) are one of the oldest known beneficial nutritional components of the human diet. Their high polyphenol content has been proven to enhance human health beyond doubt in statistics-based public health studies, especially in the prevention of cardiovascular disease and cancer. The current review concentrates on presenting and classifying polyphenol bioactive molecules (resveratrol, quercetin, catechin/epicatechin, etc.) available in high quantities in Vitis vinifera grapes or their byproducts. The molecular pathways and cellular signaling cascades involved in the effects of these polyphenol molecules are also presented in this review, which summarizes currently available in vitro and in vivo experimental literature data on their biological activities mostly in easily accessible tabular form. New molecules for different therapeutic purposes can also be synthesized based on existing polyphenol compound classes available in high quantities in grape, wine, and grape marc. Therefore an overview of these molecular structures is provided. Novel possibilities as dendrimer nanobioconjugates are reviewed, too. Currently available in vitro and in vivo experimental literature data on polyphenol biological activities are presented in easily accessible tabular form. The scope of the review details the antidiabetic, anticarcinogenic, antiviral, vasoprotective, and neuroprotective roles of grape-origin flavonoids. The novelty of the study lies in the description of the processing of agricultural by-products (grape seeds and skins) of industrial relevance, and the detailed description of the molecular mechanisms of action. In addition, the review of the clinical therapeutic applications of polyphenols is unique as no summary study has yet been done.
Keyphrases
- human health
- risk assessment
- public health
- cardiovascular disease
- climate change
- systematic review
- physical activity
- electronic health record
- type diabetes
- endothelial cells
- single molecule
- metabolic syndrome
- weight loss
- cardiovascular events
- brain injury
- subarachnoid hemorrhage
- cardiovascular risk factors
- artificial intelligence
- cerebral ischemia