Emission of circularly polarized light by a linear dipole.
Martin NeugebauerPeter BanzerSergey NechayevPublished in: Science advances (2019)
Controlling the polarization state and the propagation direction of photons is a fundamental prerequisite for many nanophotonic devices and a precursor for future on-chip communication, where the emission properties of individual emitters are particularly relevant. Here, we report on the emission of partially circularly polarized photons by a linear dipole. The underlying effect is linked to the near-field part of the angular spectrum of the dipole, and it occurs in any type of linear dipole emitter, ranging from atoms and quantum dots to molecules and dipole-like antennas. We experimentally observe it by near-field to far-field transformation at a planar dielectric interface and numerically demonstrate the utility of this phenomenon by coupling the circularly polarized light to the individual paths of crossing waveguides.