Login / Signup

Efficient Removal of Tetracyclines and Quinolones Enabled by Polyphenol-Mediated Supramolecular Coagulation.

Mengyue WangYu WangNanjiong PangMingyao WangYunxiang HeXiaoling WangJunling Guo
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
Ubiquitous antibiotics threaten human health and ecosystem sustainability, and existing removal strategies, especially conventional multistep water treatments, are primarily limited by the antibiotic-specific removal capability. Here, we explore the natural biomass, plant polyphenols, in the capture of various antibiotics with a facile treatment─polyphenol-mediated antibiotic-independent supramolecular coagulation (PMAC). The PMAC shows a superior performance in removing five tetracyclines and quinolones (up to 98.54%), even under complex environmental parameters, including different pH, the presence of inorganic particles and ionic strength, and the presence of conventional colloid-associated contaminants. Our mechanistic studies suggested that PMAC is capable of exerting multiple molecular interactions with various antibiotics, and the coordination-driven self-assembly further destabilizes the phenolic-antibiotic nanocomplexes, enabling an antibiotic-independent coagulation. Collectively, the combination of efficient remediation with inexpensive biomass suggests a simple and scalable method for the sustainable removal of antibiotics. Our strategy shows great promise as a cost-effective, facile approach to eliminate antibiotics capable of being integrated into the currently existing water treatment systems.
Keyphrases