Impact of Limb Phenotype on Tongue Denervation Atrophy, Dysphagia Penetrance, and Survival Time in a Mouse Model of ALS.
Marissa MuellerRebecca ThompsonKate L OsmanEllyn AndelChandler A DeJongeSophia KingtonZola StephensonAli HamadFiliz BunyakNicole L NicholsTeresa E LeverPublished in: Dysphagia (2022)
Current treatments for dysphagia in ALS do not target the underlying tongue weakness and denervation atrophy that is prevalent in spinal and bulbar ALS cases. To address this clinical gap, we studied the low copy number SOD1-G93A (LCN-SOD1) mouse model of ALS to quantify the impact of limb phenotype on tongue denervation atrophy, dysphagia penetrance, and survival time in preparation for future treatment-based studies. Two male LCN-SOD1 breeders and 125 offspring were followed for limb phenotype inheritance, of which 52 (30 LCN-SOD1 and 22 wild-type/WT, both sexes) underwent characterization of dysphagia penetrance (via videofluoroscopic swallow study; VFSS) and survival time at disease end-stage (15-20% body weight loss). From these, 16 mice (8/genotype) underwent postmortem histological analysis of the genioglossus for evidence of denervation atrophy. Results revealed that both breeders displayed a mixed (hindlimb and forelimb) ALS phenotype and sired equal proportions of hindlimb vs. mixed phenotype offspring. Dysphagia penetrance was complete for mixed (100%) versus incomplete for hindlimb (64%) phenotype mice; yet survival times were similar. Regardless of limb phenotype, LCN-SOD1 mice had significantly smaller genioglossus myofibers and more centralized myonuclei compared to WT mice (p < 0.05). These biomarkers of denervation atrophy were significantly correlated with VFSS metrics (lick and swallow rates, p < 0.05) but not survival time. In conclusion, both LCN-SOD1 phenotypes had significant tongue denervation atrophy, even hindlimb phenotype mice without dysphagia. This finding recapitulates human ALS, providing robust rationale for using this preclinical model to explore targeted treatments for tongue denervation atrophy and ensuing dysphagia.
Keyphrases