Login / Signup

Spin-Orbit Coupling in 2D Semiconductors: A Theoretical Perspective.

Jiajia ChenKai WuWei HuJinglong Yang
Published in: The journal of physical chemistry letters (2021)
This theoretical Perspective reviews spin-orbit coupling (SOC), including the Rashba effect and Dresselhaus effect, in two-dimensional (2D) semiconductors. We first introduce the origin of the Rashba effect and Dresselhaus effect using the Hamiltonian models; we then summarize 2D Rashba semiconductors predicted by first-principles density functional theory (DFT) calculations, including AB binary monolayers, Janus monolayers, 2D perovskites, and so on. We also review various manipulating techniques of the Rashba effect on 2D semiconductors, such as external electric field, strain engineering, charge doping, interlayer interactions, proximity effect of substrates, and external magnetic field. We then briefly summarize the applications of SOC, including the generation, detection, and manipulation of spin currents in spin Hall effect transistors and spin field effect transistors. Finally, we conclude this Perspective and propose three promising research fields of SOC in low-dimensional semiconductors, including the nonlinear SOC Hamiltonian model, 2D ferroelectric SOC semiconductors, and 1D Rashba model and semiconductors. This theoretical Perspective enriches the fundamental understanding of SOC in 2D semiconductors and will help in the design of new types of spintronic devices in future experiments.
Keyphrases
  • density functional theory
  • room temperature
  • single molecule
  • systematic review
  • ionic liquid
  • molecular dynamics simulations
  • loop mediated isothermal amplification
  • sensitive detection