Correlation between sporogenesis and lipopeptide production in Paenibacillus elgii.
Rosiane Andrade da CostaIsadora Emanoela Pereira Costa AndradeThiago Fellipe de AraújoDébora Luiza Albano FulgêncioMarise Leite MendonçaGabriel Iudy Yamaguchi RochaRaiana Moreira Dos SantosCristine Chaves BarretoPublished in: Letters in applied microbiology (2024)
Pelgipeptins, tridecaptins, and elgicins are among the antimicrobials produced by Paenibacillus elgii. Growth in complex media is commonly applied to obtain lipopeptides from culture's supernatant, but it requires further purification. This study aimed to improve the yield of pelgipeptins and tridecaptins using chemically defined media. The kinetics of antimicrobial lipopeptide yield in chemically defined media was evaluated in P. elgii AC13. Pelgipeptins were detected in the supernatant and the culture pellet, but tridecaptins were mainly associated with cell debris or endospores. We investigated whether removing Ca2+ would impair P. elgii sporogenesis, consequently improving the yield of tridecaptin. The kinetics of both lipopeptides in the presence and absence of Ca2+ were quantitatively and qualitatively evaluated and further correlated with the cell cycle. The impairment of P elgii AC13 sporogenesis had no effect on tridecaptin production, which remained undetected in the supernatant of the culture. On the other hand, the yield of pelgipeptin in a Ca2+-free medium increased. We showed for the first time that the removal of Ca2+ interrupted the sporogenesis in P. elgii and improved the yield of pelgipeptins. However, Ca+2 absence had no effect on tridecaptin yield, which is possibly degraded or associated with other cell debris component.