Login / Signup

Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater.

Evidence AkhayereEdidiong Augustine EssienDoga Kavaz
Published in: Environmental science and pollution research international (2019)
In the present study, a comparative analysis was performed on the extraction of nickel ions (Ni2+) from agricultural wastewater using nanosilica (NS) synthesized from barley (NS-B) and wheat (NS-W) grass waste with a yield of 92.4%. The experimental procedure was conducted on barley and wheat waste to obtain an 85% pure NS that served as the adsorbent for nickel extraction in wastewater. The NS was characterized and studied using X-ray fluorescence (XRF), which demonstrated that NS synthesized from barley contained 94.2% SiO2, while NS synthesized from wheat contained 93.0% SiO2. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to determine the surface morphology of the nanoparticles. The energy-dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) analysis were used to determine the elements and functional groups of the synthesized particles, respectively. Lastly, particle size and surface area analyses were performed using the Brunauer-Emmett-Teller (BET) method, which determined that the nanoparticles were 70 and 102 nm for NS-B and NS-W, respectively. The adsorption of nickel ions from agricultural wastewater was studied at various concentrations (10-200 mg/L). The kinetic models indicate that sorption equilibrium time was 65 min and that the reaction followed the pseudo-first-order kinetics model with a regression coefficient (R2) of 0.9289. Corresponding studies indicated that the Freundlich isotherms best describe the sorption reaction with an R2 value of 0.9958, which indicates the multilayer adsorption of nickel on the adsorbent. In their standard and real states, the samples indicated that NS-B and NS-W provided high levels of nickel (Ni2+) removal at 95 and 90%, respectively.
Keyphrases