Login / Signup

Visual category learning: Navigating the intersection of rules and similarity.

Gregory Isaac HughesAyanna K Thomas
Published in: Psychonomic bulletin & review (2021)
Visual categorization is fundamental to expertise in a wide variety of disparate domains, such as radiology, art history, and quality control. The pervasive need to master visual categories has served as the impetus for a vast body of research dedicated to exploring how to enhance the learning process. The literature is clear on one point: no category learning technique is always superior to another. In the present review, we discuss how two factors moderate the efficacy of learning techniques. The first, category similarity, refers to the degree of featural overlap of exemplars. The second moderator, category type, concerns whether the features that define category membership can be mastered through learning processes that are implicit/non-verbal (information-integration categories) or explicit/verbal (rule-based categories). The literature on each moderator has been conducted almost entirely in isolation, such that their potential interaction remains underexplored. We address this gap in the literature by reviewing empirical and theoretical evidence that these two moderators jointly influence the efficacy of learning techniques.
Keyphrases
  • systematic review
  • quality control
  • working memory
  • healthcare
  • deep learning
  • machine learning