Login / Signup

Atomically thin 2D photocatalysts for boosted H 2 production from the perspective of transient absorption spectroscopy.

Tanmay GoswamiHimanshu BhattDharmendra Kumar YadavHirendra N Ghosh
Published in: Physical chemistry chemical physics : PCCP (2022)
Excited state photophysical processes play the most important role in deciding the efficiency of any photonic applications like solar light driven H 2 evolution, which is considered to be the next big thing in the global search of renewable energy sources. Two-dimensional (2D) materials are getting enormous attention in the field of photocatalysis owing to their exquisite optical and catalytic properties, like high absorption coefficient, appropriate band positions, large specific surface area, high charge carrier mobility, etc. Considering the huge potential of these, many different approaches are being adapted to fabricate suitable photocatalytic systems for the efficient production of H 2 . Transient absorption spectroscopy (TAS) could be a great help in this regard, considering its efficacy in understanding any optical application. This perspective primarily deals with a few recent reports on 2D photocatalyst fabrication techniques using mechanistic insights from TAS. We have discussed the effect of doping, exfoliation and heterojunction fabrication on the photocatalytic activity of different 2D materials and explored the inherent photophysical phenomena influencing the optical behavior of these materials. A tentative future direction and possible challenges are also highlighted in this report. Overall, this unique perspective throws light on all the possible aspects of a 2D material, which are crucial and need to be addressed prior to fabrication of a photocatalyst and would be extremely helpful for the growth of the 2D photocatalytic field.
Keyphrases