Login / Signup

Modifying response times in the Simon task with transcranial random noise stimulation.

James Robert McIntoshCarsten Mehring
Published in: Scientific reports (2017)
Perceptual decisions pervade our every-day lives, and can align or conflict with inbuilt biases. We investigated these conflicting biases by applying transcranial random noise stimulation (tRNS) while subjects took part in a visual Simon task - a paradigm where irrelevant spatial cues influence the response times of subjects to relevant colour cues. We found that tRNS reduces the response time of subjects independent of the congruence between spatial and colour cues, but dependent on the baseline response time, both between subjects and across conditions within subjects. We consider the reduction in response time to be non-specific to the Simon task, and cast our interpretations in terms of drift-diffusion models, which have been previously used as mechanistic explanations for decision-making processes. However, there have been few extensions of the drift-diffusion model to the Simon effect, and so we first elaborate on this interpretation, and further extend it by incorporating the potential action of tRNS.
Keyphrases
  • decision making
  • air pollution
  • working memory
  • mass spectrometry
  • climate change
  • cerebral blood flow