Login / Signup

Dual-Cure Adhesives Using a Newly Synthesized Itaconic Acid-Based Epoxy Acrylate Oligomer.

Hae-Chan KimYong-Rok KwonJung-Soo KimJu-Hee SoDong-Hyun Kim
Published in: Polymers (2023)
Herein, a novel biomass-derived itaconic acid (IA)-based epoxy acrylate oligomer (EAO) is synthesized by means of the esterification reaction of the epoxy group of bisphenol A diglycidyl ether (BADGE) with the carboxylic group of IA. The detailed chemical structure of the as-prepared bisphenol A diglycidyl ether diitaconate (BI) is characterized via the KOH value, FT-IR spectrum, and 1 H-NMR spectrum. Further, a dual-cure adhesive system is formulated using BADGE, acrylic acid, and trimethylolpropane triacrylate with various BI contents, and the adhesive performance is investigated by measuring the thermal stability, adhesive properties, pencil hardness, and surface energy properties. Thus, the dual-cure adhesive with a BI content of 0.3 mol is shown to provide excellent thermal stability, along with an adhesive strength of 10.7 MPa, a pencil hardness of 2H, and a similar surface energy to that of a typical polycarbonate film. In addition, the properties of the BI-based dual-cure adhesive are compared with those of the dual-cure adhesives based on bisphenol A glycerolate diacrylate or bisphenol A glycerolate dimethacrylate.
Keyphrases
  • magnetic resonance
  • high resolution
  • oxide nanoparticles