Computational Design of an Electro-Organocatalyst for Conversion of CO 2 into Formaldehyde.
Foroogh KhezeliCraig PlaisancePublished in: The journal of physical chemistry. A (2024)
Density functional theory calculations employing a hybrid implicit/explicit solvation method were used to explore a new strategy for electrochemical conversion of CO 2 using an electro-organocatalyst. A particular structural motif is identified that consists of an electron-rich vicinal enediamine (>N-C═C-N<) backbone, which is capable of activating CO 2 by the formation of a C-C bond while subsequently facilitating the transfer of electrons from a chemically inert cathode to ultimately produce formaldehyde. Unlike transition metal-based electrocatalysts, the electro-organocatalyst is not constrained by scaling relations between the formation energies of activated CO 2 and adsorbed CO, nor is it expected to be active for the competing hydrogen evolution reaction. The rate-limiting steps are found to occur during two proton-coupled electron transfer (PCET) sequences and are associated with the transfer of a proton from a proton transfer mediator to a carbon atom on the electro-organocatalyst. The difficulty of this step in the second PCET sequence necessitates an electrode potential of -0.85 V vs RHE to achieve the maximum turnover frequency. In addition, it is postulated that the electro-organocatalyst should also be capable of forming long-chain aldehydes by successively carrying out reductive aldol condensation to grow the alkyl chain one carbon at a time.