Login / Signup

Axion-Field-Enabled Nonreciprocal Thermal Radiation in Weyl Semimetals.

Jiang-Yu ZhaoCheng GuoChristina A C GarciaPrineha NarangShanhui Fan
Published in: Nano letters (2020)
Objects around us constantly emit and absorb thermal radiation. The emission and absorption processes are governed by two fundamental radiative properties: emissivity and absorptivity. For reciprocal systems, the emissivity and absorptivity are restricted to be equal by Kirchhoff's law of thermal radiation. This restriction limits the degree of freedom to control thermal radiation and contributes to an intrinsic loss mechanism in photonic energy harvesting systems. Existing approaches to violate Kirchhoff's law typically utilize magneto-optical effects with an external magnetic field. However, these approaches require either a strong magnetic field (∼3T) or narrow-band resonances under a moderate magnetic field (∼0.3T), because the nonreciprocity in conventional magneto-optical effects is weak in the thermal wavelength range. Here, we show that the axion electrodynamics in magnetic Weyl semimetals can be used to construct strongly nonreciprocal thermal emitters that nearly completely violate Kirchhoff's law over broad angular and frequency ranges without requiring any external magnetic field.
Keyphrases
  • high resolution
  • high speed
  • radiation induced
  • quantum dots
  • energy transfer
  • simultaneous determination