Login / Signup

Cis/Trans Energetics in Epoxide, Thiirane, Aziridine and Phosphirane Containing Cyclopentanols: Effects of Intramolecular OH⋯O, S, N and P Contacts.

Ben E SmithJeremy M CarrGregory S Tschumper
Published in: Molecules (Basel, Switzerland) (2019)
A recent computational analysis of the stabilizing intramolecular OH⋯O contact in 1,2-dialkyl-2,3-epoxycyclopentanol diastereomers has been extended to thiiriane, aziridine and phosphirane analogues. Density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2) and CCSD(T) coupled-cluster computations with simple methyl and ethyl substituents indicate that electronic energies of the c i s isomers are lowered by roughly 3 to 4 kcal mol-1 when the OH group of these cyclopentanol systems forms an intramolecular contact with the O, S, N or P atom on the adjacent carbon. The results also suggest that S and P can participate in these stabilizing intramolecular interactions as effectively as O and N in constrained molecular environments. The stabilizing intramolecular OH⋯O, OH⋯S, OH⋯N and OH⋯P contacts also increase the covalent OH bond length and significantly decrease the OH stretching vibrational frequency in every system with shifts typically on the order of -41 cm-1.
Keyphrases
  • density functional theory
  • energy transfer
  • molecular dynamics
  • molecular docking
  • ionic liquid
  • molecular dynamics simulations
  • single molecule