Login / Signup

Impact of Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography on Therapeutic Decisions and Radiotherapy Planning in Head and Neck Squamous Carcinoma: A Retrospective Study of 46 Patients.

Anh PhamIldiko GaraiKovács ÁrpádÁdám DérErika SzantoZsolt HascsiFerenc BátyiErvin BerényiThong Minh Pham
Published in: Medical science monitor : international medical journal of experimental and clinical research (2024)
BACKGROUND Positron emission tomography/computed tomography (PET/CT) using fluorodeoxyglucose (FDG) is essential in oncology for precise tumor delineation. This study evaluated FDG PET/CT's impact on therapeutic decisions in head and neck cancer, comparing metabolic tumor volumes (MTV) measured by different methods with radiotherapy targets, crucial for treatment planning and patient outcomes. MATERIAL AND METHODS We retrospectively analyzed 46 patients with histologically confirmed head and neck cancer who underwent FDG PET/CT examination before radiotherapy. The mean age was 62 years (46-78 years). Then, we calculated MTV of the primary tumor or local recurrence using a local threshold of 41% of the standard uptake volume (SUV) corrected for lean body mass (SULmax) of the lesion and absolute threshold of SUV 2.5. Descriptive analysis of the recruited patients was assessed based on the clinical database (Medsol). RESULTS The study included 45 patients with squamous carcinoma and 1 with sarcoid cell carcinoma. PET/CT examination led to therapeutic decision changes in 11 cases. No significant difference was found in median values of Gross Tumor Volume (GTV) and MTV absolute (p=0.130). However, significant differences were observed in MTV local, MTV absolute, and GTV median values (p<0.001), with both MTVs showing significant correlation with GTV (p<0.01), especially MTV absolute (r=0.886). CONCLUSIONS FDG PET/CT examination prior to radiotherapy significantly influences therapeutic decisions in head and neck cancer patients. Based on our findings, the absolute threshold method (SUV: 2.5) appears to be an effective approach for calculating MTV for radiotherapy planning purposes.
Keyphrases